Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 17705-17715, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995754

RESUMO

Virus-like particles (VLPs) derived from bacteriophage P22 have been explored as biomimetic catalytic compartments. In vivo colocalization of enzymes within P22 VLPs uses sequential fusion to the scaffold protein, resulting in equimolar concentrations of enzyme monomers. However, control over enzyme stoichiometry, which has been shown to influence pathway flux, is key to realizing the full potential of P22 VLPs as artificial metabolons. We present a tunable strategy for stoichiometric control over in vivo co-encapsulation of P22 cargo proteins, verified for fluorescent protein cargo by Förster resonance energy transfer. This was then applied to a two-enzyme reaction cascade. l-homoalanine, an unnatural amino acid and chiral precursor to several drugs, can be synthesized from the readily available l-threonine by the sequential activity of threonine dehydratase and glutamate dehydrogenase. We found that the loading density of both enzymes influences their activity, with higher activity found at lower loading density implying an impact of molecular crowding on enzyme activity. Conversely, increasing overall loading density by increasing the amount of threonine dehydratase can increase activity from the rate-limiting glutamate dehydrogenase. This work demonstrates the in vivo colocalization of multiple heterologous cargo proteins in a P22-based nanoreactor and shows that controlled stoichiometry of individual enzymes in an enzymatic cascade is required for the optimal design of nanoscale biocatalytic compartments.


Assuntos
Capsídeo , Treonina Desidratase , Capsídeo/química , Treonina Desidratase/análise , Glutamato Desidrogenase , Proteínas do Capsídeo/química , Nanotecnologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36345849

RESUMO

Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Proteínas do Capsídeo , Vírus , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Capsídeo/química , Vírus/genética , Proteínas Recombinantes , Biotecnologia
3.
Methods Mol Biol ; 2073: 149-162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31612441

RESUMO

Capsid-based virus particles are widely engineered as viral nanoparticles and virus-like nanoparticles. The highly organized and uniform capsid structures make them ideal candidates for both in vitro and in vivo applications such as therapeutic delivery vehicles or enzymatic nanoreactors. Viruses have adapted to naturally infect a wide variety of organisms making their production achievable in various expression systems from bacterial to plants. Viral capsids can be modified externally and internally to suit the final application. The wide range of possible applications, ease of production in the system of choice, and customizable modification of viral capsids makes them an attractive choice in the field of nanotechnology. In this chapter we aim to provide a generic protocol for the purification and characterization of virus-derived nanoparticles and methodology for chemically labelling them to monitor their uptake in mammalian cells.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vírus/genética
4.
ACS Nano ; 12(5): 4615-4623, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29697964

RESUMO

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages are being developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both in vitro and in vivo cell engineering. However, there is a lack of bionanotechnology platforms that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for in vivo self-sorting of cargo-linked capsomeres of murine polyomavirus (MPyV) that enables controlled encapsidation of guest proteins by in vitro self-assembly. Using Förster resonance energy transfer, we demonstrate the flexibility in this system to support coencapsidation of multiple proteins. Complementing these ensemble measurements with single-particle analysis by super-resolution microscopy shows that the stochastic nature of coencapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable coencapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Proteínas de Fluorescência Verde/química , Nanopartículas/química , Polyomavirus/metabolismo , Proteínas Recombinantes de Fusão/química , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Engenharia Celular/métodos , Citosol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Polyomavirus/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Montagem de Vírus
5.
ACS Nano ; 11(4): 3476-3484, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28198180

RESUMO

Understanding capsid assembly following recombinant expression of viral structural proteins is critical to the design and modification of virus-like nanoparticles for biomedical and nanotechnology applications. Here, we use plant-based transient expression of the Bluetongue virus (BTV) structural proteins, VP3 and VP7, to obtain high yields of empty and green fluorescent protein (GFP)-encapsidating core-like particles (CLPs) from leaves. Single-particle cryo-electron microscopy of both types of particles revealed considerable differences in CLP structure compared to the crystal structure of infection-derived CLPs; in contrast, the two recombinant CLPs have an identical external structure. Using this insight, we exploited the unencumbered pore at the 5-fold axis of symmetry and the absence of encapsidated RNA to label the interior of empty CLPs with a fluorescent bioconjugate. CLPs containing 120 GFP molecules and those containing approximately 150 dye molecules were both shown to bind human integrin via a naturally occurring Arg-Gly-Asp motif found on an exposed loop of the VP7 trimeric spike. Furthermore, fluorescently labeled CLPs were shown to interact with a cell line overexpressing the surface receptor. Thus, BTV CLPs present themselves as a useful tool in targeted cargo delivery. These results highlight the importance of detailed structural analysis of VNPs in validating their molecular organization and the value of such analyses in aiding their design and further modification.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Proteínas de Plantas/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Vírus Bluetongue/química , Clonagem Molecular , Portadores de Fármacos/química , Humanos , Integrinas/química , Células MCF-7 , Nanotecnologia , Folhas de Planta/química , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...